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Synchronized states in chaotic systems coupled indirectly through a dynamic environment
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We consider synchronization of chaotic systems coupled indirectly through common environment where the
environment has an intrinsic dynamics of its own modulated via feedback from the systems. We find that a rich
variety of synchronization behavior, such as in-phase, antiphase, complete, and antisynchronization, is pos-
sible. We present an approximate stability analysis for the different synchronization behaviors. The transitions
to different states of synchronous behavior are analyzed in the parameter plane of coupling strengths by
numerical studies for specific cases such as Rossler and Lorenz systems and are characterized using various
indices such as correlation, average phase difference, and Lyapunov exponents. The threshold condition ob-
tained from numerical analysis is found to agree with that from the stability analysis.
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I. INTRODUCTION

Chaotic synchronization of coupled nonlinear systems has
been an area of intense research activity [1]. In such cases,
depending on the strength and nature of coupling, the sys-
tems are capable of entering into different states of synchro-
nization such as in-phase [2,3], antiphase [4], lag [5,6], an-
ticipatory [7], generalized [8-10], complete [11,12], and
antisynchronization [13-15]. Although all these different
synchronization phenomena have been explored in biological
systems also, the case of phase synchronization is more use-
ful in explaining many complex dynamical behaviors in
them. Specifically, antiphase synchronization with repulsive
coupling has special relevance in biological systems such as
neurons and ecological webs [16-18].

Most of the present studies on synchronization consider
mutually or unidirectionally coupled systems with or without
parameter mismatch. However, synchronization has also
been achieved by a common stochastic drive in uncoupled
chaotic systems [19,20]. In such cases, the critical strength of
noise for synchronization is nearly equal to the mean size of
the attractor [21]. The synchronized state thus often differs
very much from the intrinsic characteristics of the individual
system. Synchronization of chaotic systems by external pe-
riodic forcing where the driven system locks to the frequency
of the drive has also been reported [22-24]. So also, a weak
periodic force is found to stabilize in-phase synchronization
in a globally coupled array of Josephson junctions [25].

Further, in the context of many real world systems, syn-
chronous behavior can occur due to interaction through a
common medium. For instance, synchronization of chemical
oscillations of catalyst-loaded reactants in a medium of
catalyst-free solution is reported where coupling is through
exchange of chemicals with the surrounding medium [26].
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So also, synchronized oscillations in genetic oscillators occur
due to coupling by diffusion of chemicals between cells and
extracellular medium [27,28]. Global oscillations of concen-
tration of neurotransmitter released by each cell can stimu-
late collective rhythms in a population of circardian oscilla-
tors [29]. Moreover, in an ensemble of cold atoms interacting
with a coherent electromagnetic field, by controlling field
cavity detuning, synchronized behavior with self-pulsating
periodic and chaotic oscillations are found to occur [30]. In
all these cases, the coupling function has a dynamics modu-
lated by the system dynamics.

In general, such cases occur due to the common medium
interacting with the dynamical systems. One refers to such a
scheme as a coupling via a common environment. The dy-

namics of n systems x;, i=1, ... ,n, coupled through an envi-
ronment y is then given by

X = fx;.y), (1a)

y=g() +h(x),x3, ... .x,), (1b)

where x; and y have dimensions m, and m,, respectively.
Such an indirect coupling has been reported in the context of
periodic oscillators by Katriel [31]. Under suitable condi-
tions, the periodic oscillators can synchronize.

In this paper, we consider two chaotic systems coupled
through a common dynamic environment as in Eq. (1). We
show that this coupling can lead to a rich variety of synchro-
nous behavior such as antiphase, in-phase, identical, antisyn-
chronization, etc. This mechanism has the interesting feature
that the common environment while capable of synchroniz-
ing the systems does not cause major changes in their dy-
namics. In the synchronized state, the systems retain more or
less the same phase-space structure of the uncoupled system.
We present an approximate stability analysis for the stability
of the different synchronized states. We report detailed ex-
ploratory numerical studies for two standard systems,
Rossler and Lorenz, and demonstrate the rich synchroniza-
tion behavior. The transition to different stages of synchro-
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nization is studied by computing average phase differences,
correlations, and Lyapunov exponents. From the numerical
studies, we verify the relation between the critical parameters
for the transition to different synchronization states obtained
from the stability analysis.

II. ENVIRONMENTAL COUPLING

We consider two chaotic systems coupled to a common
environment through a linear coupling

X1 =f(x)) + € ¥Byy, (2a)
Xy = f(xy) + €¥Byy, (2b)
y=—Ky-— % T(lel + X)) (2¢)

The intrinsic dynamics of the environment is decaying with
k as the damping parameter and therefore, without feedback
from the systems, it is incapable of sustaining itself for ex-
tended periods of time. Here, ¢, is the strength of feedback to
the system and e, that to the environment. For simplicity, we
take y to be one-dimensional environment. Then, vy is a col-
umn matrix (m, X 1), with elements zero or one, and it de-
cides the components of x; that take part in the coupling.

The nature of feedback from and to the environment is
adjusted by prescribing values for 8, and 3,. When both S,
and B, are of the same sign, i.e., (B;,8.)=(1,1), the cou-
pling is repulsive and can drive the systems to antiphase
synchronization. When $; and (3, are of different signs, i.e.,
(Bi,B,)=(1,-1), the coupling is of difference type leading
to in-phase synchronization. We illustrate this behavior for
the case of two chaotic Rossler systems coupled through en-
vironment as given by the equations

X =—Xp—Xz+ €06y,

Xip =X +axp,

X3 =b+x;5(x; = ¢),

}"=—Ky—22 Bxii- (3)

The time series of the coupled Rossler systems for the in-
phase synchronized and antiphase synchronized cases is
shown in Figs. 1(a) and 1(b).

In the same way, two Lorenz systems are coupled through
environment as

X = 0(xp = x;1) + €8y,

Y= (r=xp)x —Xp,

Xi3 = XX — bx3,
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FIG. 1. Time series of the first variable x;; of two environmen-
tally coupled chaotic Rossler systems showing synchronization phe-
nomena. (a) In-phase synchronization (€;=€,=0.2, B;=—B,=1).
(b) Antiphase synchronization (e,=€,=0.2, B;=8,=1). In both (a)
and (b), we consider coupling only though one variable of the sys-
tem, that is y;=1, ;=0 for i# 1. Rossler parameters are a=>b
=0.1, ¢=18, i.e., we have chaotic attractor and the damping param-
eter, k=1.

2 Bl Xil - (4)

112

—Ky—

The in-phase and antiphase synchronized states of the
coupled Lorenz systems are shown in Figs. 2(a) and 2(b).
This type of coupling is very relevant in the case of bio-
logical systems such as neurons where they interact through
chemicals in the surrounding medium. We consider the case
of two Hindmarsh-Rose model of neurons coupled through a
common medium given by the following equations:

. 2
Xip=Yiptaxi,— xlz Zipt 1+ € B w,

Yip=1- bx?,z - Vi,

Zip==rz1+5r(x; 5+ C),

W=_KW__E Bl Xil- (5)

zl2

The in-phase and antiphase synchronized states of bursts for
coupled HR neurons are shown in Figs. 3(a) and 3(b).

20

0

X11(1),X1 (1) Xq1(1),Xo4 (1)

time

FIG. 2. Time series of the first variable x;; of two environmen-
tally coupled chaotic Lorenz systems showing synchronization phe-
nomena. (a) In-phase synchronization (€;=€,=9.0, B;=—8,=1).
(b) Antiphase synchronization (e,=€,=8.0, B;=8,=1). Here, Lo-
renz parameters are (o=10,r=28,b=38/3).
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FIG. 3. Time series of the first variable x;; of two environmen-
tally coupled Hindmarsh Rose neurons showing synchronization of
bursts. (a) In-phase synchronization (€;=€,=0.4, B;=—8,=1). (b)
Antiphase synchronization (€,=¢€,=0.4, B,=8,=1). Here, the pa-
rameters of the individual neuron are a=3, b=5, r=0.005, s=4, ¢
=1.6, I=3.05 such that the individual neurons are chaotic. The syn-
chronized state obtained is periodic in this case.

III. LINEAR STABILITY ANALYSIS

We analyze the stability of the synchronized state of two
systems coupled via the scheme of Eq. (2). If &, &, and z
represent the deviations from the synchronized state, their
dynamics is governed by the linearized equations obtained
from Egs. (2). That is

E =1 (x)& + Bz, (6a)
E=1 (06 + €YBz, (6b)
t== k= SV (Bif + Bof)- (6¢)

In general, it is difficult to analyze the stability of the syn-
chronized state from Egs. (6). For the special case of the
perfectly synchronized state, i.e., x; =x,, Egs. (6) can be sim-
plified by defining

&= B + B (7)
Then Egs. (6) can be written as
=1 )&+ a(Bl+B)r. (8a)
. ©
z=—Kz—EyT§0. (8b)

The synchronized state corresponding to the fixed point (0,0)
of Egs. (8) will be stable if all the Lyapunov exponents ob-
tained from Egs. (8) are negative.

Considerable progress can be made if we assume that the
time average values of f’(x;) and f’(x,) are approximately
the same and can be replaced by an effective constant value
\. In this approximation, we treat & and &, as scalars. This
type of approximation was used in Ref. [32] and it was noted
that it describes the overall features of the phase diagram
reasonably well. Thus, using &, defined by Eq. (7), Egs. (6)
can be written as

&y=N& + 262, (9a)
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€
z:=—;<z—32go, (9b)

where we choose 37+ 82=2. Eliminating z from Egs. (9a)
and (9b), we get an equation for & as

fo=(\= )&+ (kN — €,€)&. (10)
Assuming a solution of the form
50 = Aemt,

we get

(N=k) = V(N = k)>—4(€,6, — \K)
m= 2 .

The synchronized state, defined by &,=p,&+5,6=0, is
stable if Re[m] is negative for both the solutions. This gives
the following criteria for the stability of the synchronized
state:

(1) If (\=k)><4(e,€,—\k), m is complex and the condi-
tion of stability is k> A.

(2) If (\=k)>>4(€,e;—\k), m is real and the stability
condition becomes €,€,> Ak and k> \.

In the first case above, the synchronized state is possible
if we have an environment which has a sufficiently fast de-
cay to compensate for the divergence of the system due to A.
In the second case, an additional condition must be satisfied.
Here, the transition to stable synchronization is given by the
threshold values of parameters satisfying the condition

(11)

_ M«

€= (12)

€],

We now consider the properties of the synchronized state
defined by &,=p&+5,6=0, ie., Bix;+Bx,=const. Nu-
merical simulations show that the constant is zero. Thus, for
B1=B>=1, we get x;=—x,, i.e., an antiphase synchronization,
while for B,=—-8,=1 we get x;=x,, i.e., an in-phase syn-
chronization.

IV. NUMERICAL ANALYSIS

The scheme of coupling through the environment given in
Egs. (2) is applied to standard Réssler and Lorenz systems.
We study the two cases, 8;=+1 and 8,=-1, where in-phase
synchronization is possible, and B;=8,=+1, where an-
tiphase synchronization is possible.

When B;=+1 and B,=-1, we observe in-phase synchro-
nization in both Rossler and Lorenz systems [Figs. 1(a) and
2(a)]. As the coupling strength is increased, systems go to a
state of complete synchronization. When B;=8,=+1, the
synchronized states are out of phase with each other giving
antiphase synchronization for both Réssler and Lorenz [Figs.
1(b) and 2(b)]. As the strength of feedback is increased in the
case of Rossler systems, control of chaos is observed and the
systems become periodic, but the two coupled systems are
still in antiphase synchronization. In the case of Lorenz sys-
tems as the coupling strength is increased, the systems be-
come antisynchronized where x;=—x,, y;=—Y,, and z;=2,.
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A. In-phase-antiphase synchronization

The transitions to in-phase (or antiphase) synchronization
can be studied numerically using the average phase differ-
ence between the two systems. For this, we need to define
phases of individual systems. In the case of Rossler systems,
as the trajectory has a rotation around a fixed point in the x-y
plane, the phase (1) of the Rossler system can be defined
[34] as the angle

B(1) = tan™'[y(1)/x(1)]. (13)

The phase ¢(r) and the phase difference ¢(r) between the
two Rossler systems coupled through environment are calcu-
lated using Eq. (13) for increasing strengths of feedback for
identical feedback strengths €;=¢,. The mean phase differ-
ence over many cycles (¢(r)) is nearly O for the in-phase
synchronization and 7 for the antiphase synchronization.

Since the Lorenz system does not have such a proper
rotation around any fixed point, the phase cannot be defined
by Eq. (13). The phase of Lorenz system is calculated using
the modified variables [22] as

¢(1) = tan™\(Z/ir), (14)

where ii=u-u,, 7=z-z,, and u,=\2B(p—1), with z,=p-1
and u=\x"+ yj. The dynamics in (u,z) looks like a rotation
around some center point (u,,z,). The phases ¢(t) of the
individual Lorenz systems are calculated using Eq. (14). The
phases show confinement due to coupling indicating in-phase
(or antiphase) synchronization. It is evident that since we
neglect the sign of x and y in the calculation of u, phase
defined as in Eq. (14) cannot distinguish between in-phase
and antiphase cases. In this context, the similarity function S
[5] and a modified similarity function S’ [35] serves as a
useful index for identifying the in-phase or antiphase syn-
chronization.
The similarity function S is defined for a delay time 7,

([xa(t + 7) = x, (0F)

S*(7) = , 15
" [ () (1)) ()

and the modified similarity function S’ is defined as
2 L2+ D 35 0P) 6

CHOXEONEE

For B;=1,B,=-1, at 7=0, §=0 corresponding to the com-
plete synchronization and S is finite for the in-phase synchro-
nization. Similarly, for 8,=8,=1, at 7=0, S’ is 0 indicating
the antisynchronization and S’ is finite for the antiphase syn-
chronization. For the coupled Rossler systems, the average
phase difference is calculated for the full parameter plane
(€;,€) in the range (0,0.5) and the points where the value
becomes approximately 7 is plotted in Fig. 4. These there-
fore correspond to the threshold values for onset of stability
of antiphase synchronization. The full line corresponds to the
curve plotted using the threshold condition from our stability
theory in Eq. (12). The agreement is quite good with a A
=0.009 and the relation €,.*1/€, is clearly seen. Similar
transition curves are also observed for transition to in-phase
synchronization in the case of 8;=+1 and B,=-1 and also
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0 0.25 0.5
€

FIG. 4. Transition from regions of no synchronization to an-
tiphase synchronization is shown in the parameter plane €, —¢€, for
the coupled Rossler systems. The points are obtained numerically
when the phase difference becomes approximately 7. Solid curve
corresponds to the stability condition Eq. (12), i.e., €. 1/ €.

for Lorenz systems and they agree with the relation e,
«1/€;. obtained from the stability theory.

As seen in Eq. (12), we also have the relations €, x and
€;.* k. Figure 5 shows the phase plot for the transition from
unsynchronized to antiphase synchronized state in the €;—«
plane. A linear relation is clearly seen and the solid line is
drawn with the effective A=0.009, thus validating the transi-
tion criterion of Eq. (12) obtained from the stability theory.

B. Lyapunov exponents

The transitions to all the different types of synchroniza-
tion described above can be tracked by calculating the
Lyapunov exponents. Since the coupling here is indirect and

0.06 I T

FIG. 5. Transition from unsynchronized to antiphase synchro-
nized regions is shown in the parameter plane (x,¢;) for coupled
Rossler systems. Points are obtained from numerical simulation
with €,=0.6 and the solid curve is a linear fit corresponding to the
stability condition Eq. (12) with the effective A=0.009.
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FIG. 6. Four largest Lyapunov exponents are shown as a func-
tion of the feedback strength € for the two coupled Rossler systems
coupled through dynamic environment with €,=e,=e€. (a) B;=+1,
Bo=-1; the first crossing of 0 at €=0.12 (fourth largest LE) indi-
cates the transition to in-phase synchronization, while the second
zero crossing at €=0.59 (second largest LE) indicates the transition
to complete synchronization. (b) 8;=8,=+1; the first crossing of 0
at €=0.12 indicates antiphase synchronization and the region where
all Lyapunov exponents are less than or equal to zero indicates the
antiphase synchronized periodic states. (Lyapunov exponents are
calculated by considering variational equations using Wolf algo-
rithm [33].)

through an environment, instead of calculating transverse
Lyapunov exponents about the synchronized state, we calcu-
late all the Lyapunov exponents of the coupled system. The
variation of these Lyapunov exponents with coupling
strength helps to identify the onset of in-phase (or antiphase)
and complete (or anti)synchronization. The two chaotic sys-
tems and the environment together form a seven-dimensional
system. The changes in the largest four Lyapunov exponents
are used to identify transitions to different synchronization
regimes. First crossing from zero to negative of the fourth
Lyapunov exponent indicates the onset of in-phase (or an-
tiphase) synchronization and the crossing of the second larg-
est Lyapunov exponent indicates the onset of complete (or
anti)synchronization [1]. The largest four Lyapunov expo-
nents for coupled Rossler systems are shown in Fig. 6 for
various strengths of feedback. For the cases B;=+1 and 3,
=-1, the zero crossing of the fourth largest Lyapunov expo-
nent in Fig. 6(a) corresponds to the onset of in-phase syn-
chronization and the zero crossing of the second largest
Lyapunov exponent corresponds to the onset of complete
synchronization. Here, the narrow window where all
Lyapunov exponents are less than or equal to zero corre-
sponds to synchronized periodic states in Rossler systems as
verified from the time series. In the case of antiphase syn-
chronization, similar results are seen [Fig. 6(b)]. The region
where all Lyapunov exponents are less than or equal to zero
in Fig. 6(b) corresponds to the antiphase synchronization in
the periodic state. The results of a similar analysis for Lorenz
are shown in Fig. 7. In Fig. 7(a), the cases B;=+1 and B,
=—1 are shown where the zero crossing of the fourth largest
Lyapunov exponent corresponds to the onset of in-phase syn-
chronization and the zero crossing of the second largest
Lyapunov exponent corresponds to the onset of complete
synchronization. In Fig. 7(b), the case 8;=8,=1 is shown
where the zero crossing of the fourth largest Lyapunov ex-
ponent corresponds to the onset of antiphase synchronization
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FIG. 7. Four largest Lyapunov exponents are shown as a func-
tion of the feedback strengths € of two coupled Lorenz systems with
e=6=c. (a) By=+1, B,=—1; the first zero crossing of Lyapunov
exponent at €=4.2 indicates in-phase synchronization, the second
zero crossing at €=9.8 indicates complete synchronization. (b) B3,
=B,=+1; the first zero crossing at e=4.4 indicates antiphase syn-
chronization, the second zero crossing at €=9.8 indicates
antisynchronization.

and the zero crossing of the second largest Lyapunov expo-
nent corresponds to the onset of antisynchronization.

C. Phase diagram

In this section, we present the complete phase diagram in
the parameter plane of coupling strengths identifying the re-
gions of different states of synchronization such as complete
(or anti)synchronization, in-phase (or antiphase) synchroni-
zation, and unsynchronized regions. We use the average
phase difference and Lyapunov exponent to mark the differ-
ent regions of synchronization. In addition, the complete and
antisynchronization states are characterized by calculating
correlation between the two systems using

Lx1 () = (e (D]xa(1) = (6(0))]

= . 17
Voey (1) = ey ()P (0) = (xp(0)) 1 1

The phase diagram in the €;— ¢, plane for Rossler system is
shown in Fig. 8(a) for B;=1, B,=-1. As the coupling
strengths increase (along the diagonal), we see a transition
from the unsynchronized state (dark gray) to the in-phase
synchronized state (light gray) and then to the completely
synchronized state (white). For large coupling constants, the
system becomes unstable (black). The critical coupling con-
stants corresponding to the transitions between the different
types of synchronization obey the relation Eq. (12) as ob-
tained from the stability analysis. Figure 8(b) shows a similar
phase diagram for 8;=8,=1. Here, dark gray region corre-
sponds to unsynchronized states, region marked I corre-
sponds to antiphase synchronization in chaotic state, regions
II-IV corresponds to different regimes of synchronization in
periodic states, and black region corresponds to unstable
states. We find that here, depending on the coupling strength,
the coupled systems settle to two different periodic states A
and B. The x-y plane corresponding to the states A and B are
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4

€ €

FIG. 8. Regions of different states of synchronization marked
out in the parameter plane (€;—€,) for the coupled Rssler systems.
The different phase-space regions are obtained by using the
asymptotic correlation values, average phase differences, and
Lyapunov exponents. (a) 8;=+1, B,=—1. White region corresponds
to |C|~0.99 indicating synchronized regions; light gray region is
in-phase synchronized region. (b) B;=B,=+1. Region I corre-
sponds to antiphase synchronized chaotic states and regions [I-IV
correspond to different states of antiphase synchronized periodic
states (see text). In both cases, the dark gray region corresponds to
the unsynchronized states and the black regions in the upper right
corner are the unstable states.

shown in Fig. 9. In regions II and IV, both are in state A
shown in Fig. 9(a), while in region III, one system is in
periodic state A and the other in state B [Fig. 9(b)].

In regions II and IV, the synchronized states are such that
x1(t47) =x,(t), corresponding to lag synchronization, and in
region III, the systems are in antiphase synchronization in
the periodic state. The average error function calculated after
shifting x,(7) by half the time period for the regions I, III, and
IV is shown in Fig. 10.

The similar phase diagrams for coupled Lorenz systems
are shown in Figs. 11(a) and 11(b). As € is increased along
the diagonal, we observe transitions in the following se-
quence: unsynchronized state (dark gray) to in-phase (or an-
tiphase) synchronized states (light gray) to complete (or an-
ti)synchronized states (white) to unstable states (black). Here
also, the critical coupling constants corresponding to the
transitions between the different types of synchronization
obey the theoretical relation Eq. (12).

V. CONCLUSION

We report the synchronization of two nonlinear chaotic
systems by coupling them indirectly through a common en-

20 (a) (b)

1 1 1 1 1
20 0 20 -20 O 20
X X

FIG. 9. The x-y phase plane of antiphase synchronized periodic
states in regions I and III of Fig. 8(b). (a) €,=€,=1.5 Both systems
are in state A. (b) €,=¢€,=2.5. Systems are in different states A and
B.
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4 !

FIG. 10. Average error function computed after shifting one of
the time series by half the period in the synchronized periodic re-
gions II-IV of Fig. 8(b). The average error ~0 for €e<2 and €
>2.95 indicating lag synchronization. The region 2 <e<2.95 cor-
responds to antiphase synchronization in the periodic state.

vironment. The coupling mechanism proposed is general and
can be adjusted for in-phase and antiphase or complete and
antitypes of synchronization. The different types of synchro-
nous behavior and the transitions among them are analyzed
in the case of two standard systems Rossler and Lorenz using
the numerically computed Lyapunov exponents, average
phase difference, correlation from time series, and similarity
function. Using an approximate linear stability analysis, the
threshold values of coupling strengths for onset of synchro-
nization of the in-phase or antiphase type are derived and the
transitions curves obtained from numerical calculations
agree with the curves from stability analysis.

This method of synchronization has the interesting feature
that the synchronized state has almost the same phase-space
structure as that of the uncoupled dynamics. The method
reported here offers a simple coupling scheme to realize
phase (or antiphase) synchronization in two coupled chaotic
identical systems. As far as we know, the reported works in
this are mostly on nonidentical systems with parameter mis-
match or delay in coupling.

40
& 20
0
0 20 400 20 40
€ €

FIG. 11. Regions of different states of synchronization marked
out in parameter plane of coupling strengths (€;,€,) by computing
asymptotic correlation values, average phase difference, and simi-
larity functions for Lorenz systems. (a) B;=+1, B,=—1. (b) B,
=fB,=+1. In both cases, white region corresponds to |C|~0.99 in-
dicating synchronized-antisynchronized regions. Light gray region
is in-phase—antiphase synchronized state and dark gray region is
unsynchronized state. Black region in the upper right corner corre-
sponds to unstable states. In the numerical simulations, €, and €,
are varied in steps of 0.2. The time averages in Eq. (17) are taken
over 50 time units.
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The results for synchronized states with such a coupling
are presented here for three standard cases such as Rossler,
Lorenz, and Hindmarsh-Rose systems. However, we have

PHYSICAL REVIEW E 81, 046216 (2010)

checked that it works in general for a few cases also such as
FitzHugh Nagumo model of neurons and Mackey-Glass sys-
tem.
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